
USER MANUAL 
 
 
 

DATEL TRAINER TOOLKIT 
For NINTENDO® DS™ 

 
V1.00 US/UK 

 



Index 
 
1. Introduction 
2. Getting Started 

2.a. Pack Contents 

2.b. System Requirements 

2.c. Installing the Trainer Software 

2.d. Connecting to the Trainer Board 

2.e. The Action Replay Trainer Cartridge 

3. Introduction to Game Training (Hacking) 
3.a. How Action Replay Codes Work 

3.b. Anatomy of an Action Replay Code 

3.c. How Games Are Trained 

3.d. Finding the Right Address 

4. Overview of the Trainer Toolkit Software 
 4.a. Search 

 4.b. Search Results 

 4.c. Hex View 

 4.d. Run-list 

 4.e. Watched Locations 

 4.f. Disassembly View 

 4.g. Updating Your Trainer Board Firmware 

5. Finding Your Own Cheat Codes 
5.a. Set-up Checklist 

5.b. Hacking Examples – Step-by-Step 

5.b.i. Castlevania: Dawn of Sorrow 

5.b.ii. New Super Mario Bros 

5.b.iii.  Super Mario Kart DS 

6. Publishing your Action Replay Codes 

 6.a. Are Your Codes Ready To Be Published? 

6.b. Share Codes Through Online Forums or Your Website 

6.c. Create an XML Code Feed for Action Replay Code Manager 

7. Advanced Techniques 

7.a. Using Masks 

7.b. Button-Press Locations 

7.c. Code Types and Advanced Nesting 

7.d. Saving a Binary File 

8. Useful Information 
8.a. Decimal to Hexadecimal Conversion Table 

8.b. Complete List of Action Replay Engine Code-types 



9. Technical Support & Customer Services 
 

 



1. Introduction 
 
Congratulations on your purchase of Datel’s Trainer Toolkit for Nintendo DS. 
 
Trainer Toolkit is a revolutionary product designed exclusively for serious DS gamers, 
amateur programmers and aspiring game hackers. It provides you with all the hardware and 
software necessary to create your own game-busting Action Replay codes. 
 
This manual is your induction into the underground world of game hacking. 
 
This manual includes all the information you need to create your first codes. It also gives you 
a good grounding in code hacking, so you can create many more. Some codes are found 
easily, but others require perseverance, dedication and skill. But one thing’s for sure; with 
Trailer Toolkit in the right hands, nothing is impossible. 
 
 

2. Getting Started 
 
2.a. Pack Contents 
 
Your Trainer Toolkit is made up of the following parts; please check that everything is 
included before proceeding.  If anything is missing, contact Datel’s customer service 
department (see Section 8). 
 

• 1 x Trainer Board 
• 1 x Trainer Software PC CD-ROM  
• 1 x USB to Mini USB Cable 
• 1 x User Manual 

 
To use Trainer Toolkit you also need an Action Replay DS running compatible firmware 
(v1.52 or newer).  Your Action Replay’s firmware can be updated through the Action Replay 
Code Manager software that came with your Action Replay.  Use the ‘Software Upgrade’ 
button to upgrade to the latest PC software and cartridge firmware. 
 
Trainer Toolkit’s Trainer Board can also be updated with new firmware.  To update the Trainer 
Board’s firmware use the Trainer Toolkit PC application.  See Section 4.g for more details. 
 
2.b. System Requirements 
 
Because Trailer Toolkit uses PC-based ‘training’ software (connected to your DS), in order to 
use the product you need a PC that meets the following minimum system requirements: 
 

MINIMUM SYSTEM REQUIREMENTS 

Computer / 
Processor  

Personal Computer with one free USB port.  USB 2.0 
recommended for higher-speed data transfer. 

Operating System Windows 2000 or XP. Windows XP recommended. 

Communication Internet access required for software updates. 

Hard Drive <10Mb free hard drive space for software installation. 

 
 
2.c. Installing the Trainer Software 



 
Insert the Trainer Software CD into your drive and wait for the installation to auto-run.  If auto-
run is not enabled on your PC, browse to the CD and double-click the SETUP file. 
 
Follow the onscreen prompts to install the Trainer Software on your PC.  Once set-up is 
complete, you have a new program folder, ‘Datel > Trainer Toolkit’.  If opted for during 
installation, a program icon for ‘Trainer Toolkit’ appears on your desktop. 
 
Driver Installation 
 
The drivers for the Trainer Board are included on the installation CD, but are not automatically 
installed by Windows. 
 
When you connect the Trainer Board to your PC, you’re prompted to install the drivers.  To do 
so, direct Windows to the Trainer Software CD, which you should leave in your drive during 
this process. 
 
2.d. Connecting to the Trainer Board 
 
The Trainer Board is a special piece of hardware that allows your PC real-time access to the 
contents of your DS’s memory. 
 
Snap the Trainer Board into the GBA cartridge slot on your DS, and connect it to your PC via 
the supplied mini-USB to USB lead. 
 
When Windows detects the Trainer Board, must direct it towards your Trainer Software CD 
for the necessary USB drivers. 
 
Specify that Windows uses the driver file: DSTRAINER.SYS in the root of the Trainer 
Software CD. 
 
Can’t Talk to Trainer Board Errors 
 
When using Trainer Toolkit, from time to time you may receive the error ‘Can’t talk to trainer 
board!’.  This message means that USB communication between the Trainer Board and the 
PC application has failed.  This may be due to the USB cable being nudged or removed, or 
the result of a crash during training. 
 
There are a number of ways to re-establish USB communication; different methods work for 
different situations: 
 
If you nudge or 
disconnect the cable 

Reconnect the cable (if necessary) and open the Hex viewer in 
Trainer Toolkit.  Communication should be re-established. 

If your DS powers down Power your DS back up (booting using the Action Replay Trainer 
cartridge) and open the Hex viewer to establish/test 
communication. 

If you crash the trainer Reboot the DS and try opening the Hex viewer to re-establish 
communication. 
 
If this doesn’t work, try disconnecting the USB lead from the 
Trainer Board and then removing the Trainer Board from the DS.  
This will remove power from the board and the USB controller.  
Once you reconnect the Trainer Board and reboot, you should 
be able to re-establish communication.  

 
 
2.e. The Action Replay Trainer Cartridge 



 
Trainer Toolkit also uses a modified version of Action Replay DS running in the DS cartridge 
slot to test codes as you develop them. 
 
Snap the Action Replay Trainer cartridge into the DS cartridge slot on your console before 
you begin to train. 
 
 

3. Introduction to Game Training (Hacking) 
 
3.a. How Action Replay Codes Work 
 
Before you begin creating your own Action Replay codes, it’s important to first understand 
how Action Replay codes themselves work. 
 
Action Replay DS codes can only be used by someone with an Action Replay DS and the 
game in question.  The codes cannot be entered without an Action Replay DS, and they’re of 
no use to someone who doesn’t own the game to which they refer. 
 
When a user enters a new code into their Action Replay, and then enables the code and runs 
the game, Action Replay loads the codes into the console’s memory and runs the codes. 
 
In the case of simple codes like ‘Infinite Health’, this involves constantly writing a value to a 
location in memory, where both the memory address and the value are included in the Action 
Replay code.  By constantly writing a value such as ‘99’ to the address that stores the value 
of how many lives you have, whenever the game tries to change the value at that location 
(when you lose a life) Action Replay immediately puts it back up to ‘99’ again! 
 
 
3.b. Anatomy of an Action Replay Code 
 
Action Replay codes generally are made up of a code type, a memory location and a value for 
that memory location. 
 
Here is the Action Replay code ‘Infinite Lives’ for Super Mario 64 DS: 
 
020973EC 00000063 
 
Let’s break down the code: 
 
Code type Memory location Value 
0  20973EC 00000063 

32bit write-to 
location. 

20973EC is the address in the console’s 
RAM where the value is written to. 

Writes the value ‘99’ (which is HEX 
63 in decimal). 

 
In plain English this code equates to: 
 
“Keep writing the 32bit value ‘99’ to the memory location 20773EC”. 
 
While ‘training’ the game we found the memory location 20973EC is where Super Mario 64 
DS stores the value of how many lives you have.  By constantly writing the value of 
00000063 to that location, you always have 99 lives, which effectively gives you ‘Infinite 
Lives’. 
 
Multi-line codes 
 



In the previous example, we looked at a very simple Action Replay code, ‘Infinite Lives’ for 
Super Mario 64 DS.  When you first start creating your own codes, it‘s likely most will be 
simple one-line ‘infinite….’ codes like this. 
  
Not all codes are only one line long, though.  You’re probably familiar with entering some very 
long codes into Action Replay.  So why are some codes many lines long, and what is 
contained within them? 
 
Let’s take a look at a more complicated code by breaking it down line by line to understand 
how it works. 
 
Here’s the Action Replay code, ‘Press Y For Moon Jump’ for Metroid Prime: Hunters: 
 
923fffa8 00002400 
020da74c 00000398 
d0000000 00000000 
 
Again, let’s break down the code: 
 
 
Code type Memory location Value 
9 23fffa8 00002400 

16bit "if equal" 
instruction. 

The memory location where the button 
press states for this game are stored. 

The value when ‘Y’ alone is pressed. 

0 20da74c 00000398 

32bit write The memory location where the value for 
gravity is stored. 

Write the value of 920 (HEX 398 in 
decimal) 

d 0000000 00000000 

End If   

 
In plain English, this code is: 
 
If the value for the ‘Y’ button being pressed is true (ie. the player pressed ‘Y’), write a value of 
920 to the memory location that stores the current gravity value. 
 
In this example, you can see Action Replay codes are actually a programming language in 
themselves.  Included in the Action Replay Code Engine are 27 different ‘code-types’ whose 
functions can be combined and nested to achieve amazing results, even when a game seems 
determined to make life hard for a hacker! 
 
A full list of all the Action Replay code-types is included towards the back of this manual. 
 
 
3.c. How Games are Trained 
 
Sometimes referred to as ‘hacking’, ‘game training’ is the more descriptive name given to the 
process of using third party hardware/software to analyze the way a game works and modify 
its behaviour in various ways. 
 
Training is generally done by sequentially comparing blocks of memory dumped from the 
console’s RAM at slightly different points during a game.  The blocks of memory are 
compared using logical ‘operators’ such as Greater Than, Less Than, Equal To, etc.  The 
results of these comparisons then provide a list of memory locations where the desired value 
(like the value that stores how many bullets or lives you have left) may reside.  This process is 
called ‘searching’. 
 



Once you have a list of only a few possible memory locations where the value want might be 
stored, you can use Trainer Toolkit features like ‘Watched list’ to watch the values at a list of 
particular memory locations.  By keeping an eye on the values at different locations, you can 
easily spot when a value changes at exactly the time you do a certain thing in the game. This 
information can then be used to rule certain locations in or out of a particular search. 
 
Many dumps and comparisons using different operators may be necessary in order to reduce 
the number of possible memory locations to a manageable number (maybe 20 or less).   
 
Where the memory dumps are made depends on what code you’re trying to create. 
 
To find: Compare memory dumps: Look for: 
Infinite time Sequentially as the timer goes up Values greater then 

previous dump 

Infinite lives Before losing a life, after losing a life, after losing 
another life... 

Values less than previous 
dump or equal to a specific 
value 

Have a number of 
stars 

Before collecting a star, after collecting a star, after 
collecting another star… 

Values greater than 
previous dump or equal to 
a specific value 

Infinite ammo Before firing a bullet, after firing a bullet, after firing 
another bullet… 

Values less that previous 
dump or equal to a specific 
value 

 
Let’s look at a couple of examples of searches to put this idea into context. 
 
Example 1: Searching for Infinite Ammo 
 

1. Load the game and get it to a point where we’re in the actual game itself (not a menu, 
loading screen, etc.) 
 

2. Now perform a ‘new search’ which ‘dumps’ the entire contents of the DS’s memory 
into Trainer Toolkit. 
 

3. Wait a few seconds and then search again for values that have stayed the same 
(because we haven’t fired any bullets).  This would rule out thousands of memory 
locations that have changed like locations storing the coordinates of sprites, the timer 
and any graphics that are changing, etc. 
 

4. Now fire the gun and search again, this time asking Trainer Toolkit to only show 
locations where the value is less than before (because the number of bullets we have 
has gone down).  Chances are the value has gone down for several memory 
locations, not just the location that stores the amount of bullets you have – we’re 
unlikely to get it first time.  At this stage, it’s normal to perform several more searches.  
Simply fire another bullet and look for values that have gone down, and do searches 
without firing a bullet first and look for values that have stayed the same. 
 

5. You could also try firing all the bullets in the clip, and when the game provides us with 
a new clip, we could search for a value that has gone up. 

 
Through this process of searching and then searching again only within the results of the last 
search, we narrow down the number of possible locations for the value we want to find until 
we have only a manageable number to check.  Less than ten is perfect. 
 
False Positives 
 
In the above example, it’s likely the number of possible memory locations never falls below 
two, because when you fire your gun there’s usually two things that happen.  The actual place 



in the memory that records the number of bullets you have goes down, and the place in 
memory storing the graphic that tell you how many bullets you have changes. 
 
It’s quite possible by watching the memory locations change as you fire the bullets to think 
that you have found the place where the number of bullets you have is stored when in fact 
you’re actually looking only at the location that controls the graphics that tell you how many 
bullets you have. 
 
If you tried to create a code for infinite bullets but accidentally wrote a value to the location 
that controls the graphics for the number of bullets and not the location of the number of 
bullets itself, when you fire your gun the number of bullets would appear to stay the same, but 
eventually you would run out of bullets anyway! 
 
It’s things like this you need to look out for when you test your codes. 
 
Example 2: Searching for Freeze Timer 
 

1. In this example, we have little control over time itself in the game, other than for as 
long as the game is not paused, the timer will certainly be going up (if it measures 
how long you’re taking to complete a level), or down (if you’re playing against a timer). 
Start with a New Search and get a dump of the memory at the start of the game. Let’s 
assume we’re dealing with the former, maybe a racing game where your lap times 
are recorded by a timer which (of course) increases as you play. 
 

2. Without moving or doing anything other than letting a few seconds pass, we then 
search again, asking Trainer Toolkit to show us only the values that have increased 
since the last search. 
 

3. We can then continually repeat this process as we try to eliminate other spurious 
memory locations from our search. 
 

4. We could also try pausing the game and asking Trainer Toolkit to provide us with a 
list of locations that have not changed since the last search. 

 
As with the previous example, we should be mindful that there might be values that are 
always changing when the timer is running.  The first is the timer itself; the second is the area 
of memory that controls the graphics for the timer display. 
 
 
3.d. Finding the Right Address 
 
Once you’ve used the search techniques described in the previous section to identify some 
possible memory locations, you can use other tools within Trainer Toolkit to identify the 
correct address from the list of possible locations you have found. 
 
Trainer Toolkit has a variety of functions (explained in detail in the next section) which can 
help you identify the correct locations.  Some of these functions allow you to watch selected 
memory locations real-time and others allow you to actually modify the value at a location and 
examine the result. 
 
Try using the ‘Hex View’ feature to look at a memory location you are interested in.  Enable 
‘Auto refresh’ and then watch to see if the value to changes in a way consistent with what you 
are looking for. 
 
If you have a number of different possible memory locations, try adding them to your 
‘Watched Locations’ list.  This acts as a clip-board of possible memory locations from where 
you can try ‘Poking’ different addresses with a chosen value and looking at the result.  As you 
rule out locations, remove them from your Watched Locations list. 
 
 



4. Overview of the Trainer Toolkit Software 
 
4.a. Search 
 

 
 
The Search panel is the starting point for all your game training projects.  Not until you have 
performed a number of search operations and narrowed down your options will you know 
where to look in the DS’s memory for the function you are trying to modify. 
 
When you start a new training project you will need to perform a ‘New Search’.  The ‘Search 
again’ button is used to search within the results of the previous search. 
 
Single Value Search 
 
Use the radio buttons to select the operator appropriate to your search requirements. 
 
If the ‘Previous value’ box is ticked the comparison will be made with the values of previous 
searches.  If the box is unchecked then the comparison will be made with the value entered in 
the text box. 
 
Range Search 
 
If you know you are looking for a specific value stored somewhere in your DS’s memory then 
you can perform what is called a ‘Range Search’.  Use the radio buttons to control whether 
you are looking for a specific value (or range of values) or excluding a value (or range of 
values). 
 
For example, to perform a search for all memory locations containing a value between 1000 
and 2000 you would use a range search ‘Inside range’ from 1000 to 2000 (or if you wanted 
to use hex you could type from 0x000003E8 to 0x000007D0). 
 
 
4.b. Search Results 
 



 
 
The Search Results panel displays the results from each search you have performed (see 
4.a.).  Each search is shown sequentially alongside the number of results for a given search 
and the type of search that was performed. Results can be collapsed and expanded using the 
[+] symbol. 
 
To see the actual results themselves for the search, double click on a search in the Search 
Results window (if there are lots of results they will be limited to 1000) and the results will be 
launched in a new window. 
 
Rolling back 
 
One of the most useful features of the Search results window is the ability to ‘roll back’ to the 
results set of any one of the searches in the results window.  Rolling back means that any 
future search comparisons will apply to the results of the search that is rolled back to (not the 
latest set of results) and can be very useful if you have mistakenly ruled out the actual value 
you are looking for.  You’ll know this has happened if you end up with no results! 
 
To roll back to a previous results set, highlight the search you would like to roll back to (in the 
Search Results window and right click.  Click ‘Roll Back’. 
 
4.c. Hex View 
 

 
 



The Hex View is a really useful aspect of Trainer Toolkit and has a variety of uses.  Open Hex 
View by choosing ‘Tools > Show Hex View’ from the main menu in Trainer Toolkit. 
 
The Hex View shows the memory address down the left hand side (in green) and then the 
values of the memory locations adjacent.  The Hex view will colourise values that have just 
changed and can be set to auto-refresh (see below) to provide a virtually real-time view of 
your DS’s memory. 
 
Hex View is NOT read only! - You can actually make modifications directly to the memory 
locations you are looking at by selecting them and typing in new values. 
 
Functions 
 
When you right click anywhere in the Hex view you will be presented with a menu with the 
following function. 
 
Refresh When you do not have ‘Auto refresh’ enabled, use this menu option to 

refresh the Hex view. 

Auto-refresh Enable this option to provide a virtually real-time hex view of your DS’s 
memory.  When enabled, the hex view will constantly update, showing the 
current values at the visible memory locations. 

Goto address Because the Hex view displays the entire contents of the DS’s memory, 
you will normally need a means of jumping to a particular location.  Right 
click anywhere in the Hex view and choose ‘Goto Address’.  You will be 
prompted to enter the memory address to goto, enter an address (using 
the 0x prefix) and hit ‘Goto’. 

Search/replace Use search and replace to make changes to values in the DS’s memory. 

Fit to window Control how the data is displayed in the Hex view 

Load from file You can load a complete or partial memory dump using this option in the 
Hex view. 

Save to file You can save out a complete or partial memory dump using this option is 
the Hex view.  This functionality is covered in section 7.d. 

 
 
4.d. Run-list 
 

 
 
The Run-list is another core aspect of Trainer Toolkit and is a real-time list of what Action 
Replay codes are currently enabled.  When the ‘Currently Active’ window is empty, no Action 
Replay codes are enabled. 
 



Use the Run-list to test codes whilst you are working on them.  Paste your codes into the 
Runlist window (make sure you remove any 0x’s from the start of your codes) and then hit the 
‘Upload’ button to send them activate them in game. To turn off any codes simply clear the 
Runlist window and click ‘Upload’. 
 
The Run-list can be used to test any combination of Action Replay codes, included nested 
conditional codes, in fact, anything you can run on an Action Replay! 
 
4.e. Watched Locations 
 

 
 
The Watched Locations panel is like a clip-board you can use to store a list of memory 
locations you are interested in.  Click ‘Tools > Watched Locations’ to open the panel. 
 
It’s most likely that you’ll add locations to the Watched Locations panel by right click on a 
memory location in the Results for a particular search (double click a search in the Search 
Results panel to open the results panel).  In the popup menu, choose ‘Add to watchlist’, you 
will even be given the option to add notes to accompany the watched location. 
 
Once a location has been added to the Watched Locations panel you will be able to monitor 
the value at the location and also ‘Poke’ a value to the location by double clicking it.  This 
allows you to perform a one-time write of a new value to the location.  This is a very quick way 
to test a location. 
 
4.f. Disassembly View 
 



 
 
Included in Trainer Toolkit is a basic Disassembly View which can be accessed by choosing 
‘Show Assembler View’ in the Tools menu. 
 
The Disassembly view will not provide a complete disassembly of the code as this is beyond 
the scope of Trainer Toolkit but can provide some useful insights for the trained eye.  For 
those seeking full disassembly we would suggest a professional package such as IDA. 
 
4.g. Updating your Trainer Board Firmware 
 
The firmware on your Trainer Board (the GBA port cartridge) can be updated, should a 
firmware update become available, by choosing ‘Tools > Update Trainer Firmware’ in Trainer 
Toolkit. 
 
Use the browse dialogue to select a firmware file and choose OK. 
 

5. Finding Your Own Cheat Codes 
 
5.a. Set-up Checklist 
 
Before you hack your first code, follow this checklist to make sure you have everything in 
place, ready to go: 
 

• The Trainer Board is connected to the GBA cartridge slot on your DS. 
• The Trainer Board is connected to your PC using the supplied mini-USB to USB cable. 
• The Action Replay Trainer cartridge is in the DS cartridge slot on your DS. 
• The Trainer Software is installed on your PC. 
• The Trainer Board drivers have been installed on your PC. 
• You have a DS game ready to hack! 

 
If you’ve completed the above steps, you’re ready to power up your DS console and begin 
hacking your first code! 
 
5.b. Hacking Examples – Step-by-Step 



 
The easiest way to learn how to use trainer toolkit is to follow one or more of the examples 
below using your own copy of the game to mirror each step in the example. 
 
Choose an example which uses a game you own or can borrow.  If you don’t have access to 
any of the games used in the examples, don’t worry.  Just read through them and try to follow 
what’s happening in each step before you try your own games. 
 
5.b.i. Castlevania: Dawn of Sorrow 
 
Code to find: Infinite Health (HP) 
Region: USA 

Difficulty: 1 2 3 4 5  
 
 
Code Introduction 
 
In this example, we try to find the memory location that stores the amount of health (HP) our 
character has.  We will perform a number of searches, each time after having been ‘hit’ by the 
skeleton at the start of the level (reducing our HP), each time looking for values that have 
gone down.  Once we find the correct location, we will write the value ‘99’ to it, effectively 
giving us infinite health. 
 
Step by Step 
 
Load ‘Castlevania: Dawn of Sorrow’ and start a new game.  When the game loads and you’re 
standing on the street, don’t move.  Just click the ‘Start’ button to pause the game. 
 

 
 

1. In the Search window, click ‘New Search’ and when prompted, choose ‘Unsigned 
16bit’ and click OK.  This starts the first dump of the DS’s memory to your trainer. 

 



 
 
 

2. Now we’ll let a few seconds pass before setting the ‘Single search value’ to ‘Equal to’ 
and clicking ‘Search again’, to search within the previous results.  This is because we 
know our health hasn’t changed, so we can narrow down the search to only values 
that haven’t changed since the last search. 
 

3. Now walk left slightly towards the skeleton.  He’ll react by throwing something at you.  
Let it hit you so that your HP goes down slightly, then pause the game once more.  
Set the ‘Single search value’ to ‘Less than’ (since you know your HP has just gone 
down) and click ‘Search again’. 

 

 
 

4. Your search results window should now look similar to one shown above.  Notice 
you’ve narrowed your possible locations down from 2,097,152 to 529.  Let’s do a few 
more searches to bring that number down even further. 
 

5. Unpause, and let the skeleton hit you again before pausing again.  Leave the ‘Single 
search value’ set to ‘Less than’, and click the ‘Search again’ button. 
 
Repeat the above step three more times, and you should be left with only two 
possible results.  Further searches won’t reduce this number any further (try if you 
like, it won’t do any harm). 
 

 
 

6. Now we have only two possible memory locations where HP is being stored, we need 
to find out which is the correct one.  With so few options, the quickest thing to do in 
this case is try a memory location and see if it works. 

 



 
 

7. Double-click on the last search in the ‘Search Results’ list so the ‘Results for 
search…’ window opens.  In the new window, right-click on the first address 
“0x020F2000” and choose ‘Copy address’. 

 

 
 

8. To test the address, we need to create a code and make it active within the game.  
Click on ‘Tools’ and then ‘Run-list’.  The Run-list is a sort of real-time Action Replay 
where you can enable and disable codes at any time.  Right-click in the left-hand 
Run-list window, and choose ‘Paste’ to paste the memory location copied from the 
Results window. 
 
After you’ve pasted the address, delete the “0x” from its start and then add a space 
after it, to separate it from the value you add next.  Let’s test the code by trying to 
write a value of ‘99’ (63 in hex), which we do by adding the following to the right of the 
address in the Run-list: ‘00000063’.  The finished code looks like this: 
 
020F2000 00000063 
 
Click the ‘Upload’ button to activate this code in your game now. 
 

9. Now that we are constantly writing the value of ‘99’ to the memory location 
“020F2000” we can un-pause the game and see if we have given ourselves infinite 
health.  After un-pausing, wait a couple of seconds to be hit again by the skeleton.  
Unfortunately, when you get hit you notice your health (HP) still goes down.  This 
must be because we picked the wrong one of the two values.  Let’s pause the game 
(so we don’t die!) and look again at the addresses in our search results.  Right-click 
on the second address “020F7410” and choose ‘Copy address’. 
 
Return to the Run-list window and delete the first address you tried (the 020F2000 
bit) and replace it with “020F7410” so that your code looks like: 
 
020F7410 00000063 
 
Click the ‘Upload’ button again to write the value ‘99’ to the new memory location.  
Un-pause the game and let the skeleton hit you again to see if this new location 



works.  Congratulations!  You should now find your HP rating never changes from ‘99’. 
 
Incidentally, the other memory location is used to control the on-screen graphic 
showing how many HP you have.  You could happily write ‘99’ to both memory 
locations like this: 
 

 
 
020F2000 00000063 
020F7410 00000063 
 
Now the onscreen HP bar always stays full too (even though this doesn’t effect 
anything in game). 

 
 
5.b.ii. New Super Mario Bros 
 
Code to find: Have 99 coins 
Region: USA 

Difficulty: 1 2 3 4 5  
 
Having completed the steps in the checklist (Section 4.a.), switch on your DS console and 
when prompted, swap your Action Replay Trainer Cartridge for your copy of New Super Mario 
Bros.  Tap the screen to launch the game. 
 
Code Introduction 
 
In this example we’re looking for the memory location that stores the number of coins you’ve 
collected.  We do this by performing sequential searches after collecting coins one at a time, 
and looking for memory locations that store values equal to the number of coins.  Once we 
find the location, we’ll create a code that writes the value ‘99’ to it. 
 
Step by Step 
 
When the game loads, choose to play a ‘Mario Game’ and then select a blank save file to 
start a new game.  Let the game start, run right and press ‘A’ to begin world 1-1. 
 
The number of coins we have collected is shown in the top-left corner of the screen.  We must 
now find where in the DS’s memory the current number of coins is stored, so we can write our 
own value to it. 
 

1. As you start the level, open your Trainer Toolkit PC software and click the ‘New 
Search’ button.  When prompted, choose ‘Unsigned 8-bit’ (the reasons for this are 
explained in a later chapter). 
 

2. Once the dump is complete, you see the ‘Search Results’ window displayed in the 
trainer software.  Return to the Search window and in the ‘Single search value’ 
section, un-tick the box marked ‘Previous value’ and set the search type to ‘Equal to’.  
Now enter the number ‘0’ in the box underneath, marked ‘Previous value’.  Click 



‘Search again’. 
 

3. Now collect a single coin.  Once you have done this, click the ‘Start’ button to pause 
the game and change the value ‘0’ to the value ‘1’ in the box underneath ‘Previous 
value’ in the search window before clicking ‘Search again’. Previously, you looked for 
the value ‘0’, as you had zero coins. Now you’re looking for ‘1’, as you have one coin. 
A value which read ‘0’ after the previous search but reads ‘1’ now might be the one 
that stores the number of coins… 
 

4. Un-pause the game, collect one more coin and then pause again.  Change the value 
in the search window to ‘2’ and click ‘Search again’.  See what we’re doing? Each 
search looks for the current number of coins you hold. Any location which didn’t read 
‘0’ when you had no coins, ‘1’ when you had a single coin and ‘2’ now you have two 
coins can’t possibly be the value which stores the number of coins, and is eliminated 
by our searches. 
 
You should notice that the ‘Search results’ window is displaying the results of each 
search along with the number of results after each search.  If you have followed the 
above steps you should now have only two results. 
 

5. Repeat the process one more time, un-pausing the game, collecting a third coin, 
pausing, changing the search value to ‘3’ and clicking ‘Search again’.  This produces 
a search with only one result; you’ve now found the place where New Super Mario 
Bros stores the number of coins you hold! 
 

6. The next step is to check we have the right location by trying to write our own value to 
it.  Double-click on Search #4 to look at the actual results for the search.  In the 
window that opens, you see one address listed: “0x0208B37C”.  Right-click on the 
address and choose ‘Copy Address’. 
 

7. Click ‘Tools’ in the menu, and choose ‘Show Run-list’.  The Run-list is a sort of real-
time Action Replay where you can enable and disable codes at any time.  Right-click 
in the left-hand ‘Run-list’ window and choose ‘Paste’ to paste the memory location 
copied from the Results window.  Next, remove the “0x” from the start of the memory 
location to leave “0208B37C”. 
 

8. Now we need to pick a value to write to this location.  Let’s choose ‘99’.  First, we 
need to convert ‘99’ into hexadecimal (since all values used by Action Replay are in 
hex).  Using the conversion table at the back of this manual, we see this value is ‘63’.  
Values are entered in eight-character blocks, so we enter ‘63’ as “00000063”.  This 
value is typed along side the memory location in the Run-list window (separated from 
the memory location with a space), so the finished code reads: “0208B37C 
00000063”. 
 

9. It’s now time to activate our code.  Click the ‘Upload’ button to send the code to the 
‘Currently Active’ list, which is the Action Replay codes that are enabled in your game.  
When you do so, you see the number of stars in the top-left corner of the screen 
change to ‘99’. 
 
Congratulations, you have created your Action Replay code! 
 
Note: If you received the message ‘Failed to parse the runlist’, it’s probably because 
you have entered an incorrect number of characters as the value or have forgotten to 
take the “0x” off the address. Check the code against the one listed above and try 
again. 

 
 
5.b.iii.  Super Mario Kart DS 
 



Code to find: Freeze Timer 
Region: USA 

Difficulty: 1 2 3 4 5  
 
 
Code Introduction 
 
In this example, we’re looking for a way to freeze the timer in Super Mario Kart DS.  This code 
is more difficult to find than the two previous examples, because the memory location where 
the timer is stored varies from level to level.  This means if we make a code that freezes the 
timer in the first Time Trial level, it won’t work in a different Time Trial level, in a Multiplayer or 
Grand Prix level. 
 
Because the location where the timer is stored changes, to create this code we need to find 
another memory location too, the location that stores what is called a ‘pointer’ to the timer’s 
memory location. 
 
Step by Step 
 
Load Trainer Toolkit and then swap your Action Replay Trainer Cartridge for Mario Kart DS.  
When Mario Kart DS loads; choose ‘Single Player’ and then ‘Time Trials’ from the menu.  
Choose the default character, kart and course.  Turn off ‘ghost data’ if asked, then click ‘OK’. 
 

1. Once the race starts, pause the game without having moved at all.  In Trainer Toolkit, 
perform a ‘New Search’ and select ‘Unsigned 32-bit’. 

 

 
 

2. When the search is completed, leave the game paused and in the Search window, 
set the Single value search to ‘Equal to’, tick the box for ‘Previous value’ and click 
‘Search Again’ (since we know the timer value will not have changed). 
 

3. Next, un-pause the game but don’t move the kart in any way.  Let a couple of 
seconds pass, and then pause again.  In the Search box, change the ‘Single search 
value’ to ‘Greater than’ and click ‘Search again’.  You notice this search returns 
around 92 results. 
 



 
 

4. Let us repeat the previous step several times to reduce the number of memory 
locations in our results.  By un-pausing, re-pausing and searching again using the 
‘Greater than’ operator, we can reduce the number of possible locations to around 15. 
 

5. With only 15 locations (we don’t seem to be able to reduce this number much further 
through searches), we can try each of these memory locations in turn to see if we can 
identify the right one.  Double-click on the last search in your ‘Search results’ window 
to view the actual results themselves.  
 
We will now use a feature called ‘Poke memory’ to quickly try out our different 
locations.  Your results window should look something like this: 
 

 
 
We can ‘poke’ a memory location by simply double-clicking on it in the results window.  
Try double-clicking the last entry in the list of results.  You should see a window open 
like this: 
 



 
 
’Poking memory’ is simply a way of performing a ‘one time’ write of a value to a 
memory location.  In this case, we will try poking the value ‘0’ to the first memory 
location we try.  We then look in the game and see if the time jumps down to ‘0’, and 
then starts counting up again, since poking a memory location only performs a one-
time write, not a continuous write. 
 
Un-pause the game so it’s running, and in the ‘Poke memory’ panel, type ‘0’ in the 
‘Value’ box and click ‘OK’.  Take a look at the timer in-game and see if it suddenly 
restarts.  If you poked the address “0x0235A350”, you find the timer doesn’t change.  
We clearly need to try some more addresses. 
 

6. If we’re going to try poking a number of locations to find the right one, we can start by 
choosing the most likely locations.  In this example, because we know the time starts 
at ‘0’ and counts up, it’s likely to still be quite a low number (maybe it counts in 
milliseconds), so we can look down the list of possible locations and identify those 
that look quite low.   
 
Working up, from the bottom of our list (yours should be very similar), we might 
choose to try: 
 
0x0235A350, 0x02355FA0, 0x02355F7C, 0x02355F64, 0x022CC644, 
0x022CF4C, 0x022C7620, 0x0217B9D0. 
 
Since all these locations have values like:  
 
0x0000053C, 0x000004D4, 0x000003A6 etc, which all look like they could be timer 
values. 
 
Try poking, one at a time, each of the memory locations listed above with the value ‘0’ 
to see which one resets the timer.  After several tries, you should find the location 
“0x02355F64” holds the value for the timer.  As soon as you poke that location with 
a ‘0’, the timer is reset. 
 

7. Once you have found the memory location that stores the timer for this level, it’s now 
worth testing this location to see if it works for other levels or types of race.  One way 
we can do this is to add this memory location to our Run-list using right-click, ‘Copy 
location’ and then pasting it into the left-hand window of the Run-list panel, 
remembering to remove the ‘0x’ from the start.  Add the value “00000000” to the right 
of the memory location (to write the value ‘0’ to the location). You should have a code 
in the Run-list like this: 
 
02355F64 00000000 
 
Click the ‘Upload’ button to start the constant write of the value ‘0’ to the memory 
location.  If you un-pause the game, you should see that the timer is now frozen at 
0:00 (the milliseconds digit is flickering).  This is because the code you have created 
and run in the Run-list constantly writes the value of ‘0’ to the memory location, unlike 
when you ‘poke’ a value and it’s written only once. 



 
With this code running, we can quit this race and try a different race.  Press ‘Pause’ 
then choose ‘Quit’.  Now start a new race choosing ‘Single Player’, ‘Grand Prix’, 50cc 
and then choose the default character, kart and circuit. 
 
When the race starts you notice that the timer is running!  This shows us our ‘Freeze 
Timer’ code doesn’t work on all levels.  In fact in this case, it only works on the race 
we created it for.  Clearly, we’re not done yet with this code! 
 

8. What we need to do now is find out whether the memory location used to store the 
timer varies just from track to track, or whether it moves location each time a new 
race is started.  The way we do this is by going back to the original track and seeing if 
our code is still working.  Quit the existing race and start a new one, choosing: ‘Single 
Player’, ‘Time Trials’, ‘Time Trials’ and then the default character, kart and circuit (the 
same as we chose originally).  Again, choose no ghost data. 
 
When the race starts, you notice the timer isn’t changing.  This shows the memory 
location storing the timer does not change every time a race starts.  Instead, it most 
likely just uses a different location for each race. 
 
Since we know the game needs to know where to look for the timer too, there must 
be a memory location that stores the address of the timer for that level.  This location 
is called a ‘pointer’. 
 
There might be a pointer specifically for the timer, or there might be a pointer that 
points to the start of a number of locations that store other values that move from 
race to race as well as the timer.  Only further investigation will reveal which way this 
game works. 
 
Let’s look for the memory location that stores the pointer to the timer.  For simplicity, 
we start by looking for a memory location storing the address of the location we found 
in the original search. 
 
Since we know the address of the timer on the ‘Time Trails’ first level to be 
“02355F64”, we can perform a new search looking for a memory location storing that 
value. 
 
In the ‘Search’ window, click on ‘New search’ to clear the previous search and get a 
fresh dump of the DS’s memory.  Once complete, click on ‘Inside range’ under 
‘Range search’ in the Search window, and set the range to be from 0x02355F64 to 
0x02355F64.  This will return all addresses storing exactly the value of the address 
of the timer for this race. 
 
As it happens, this returns a result showing us there’s a pointer that points specifically 
to the timer location.  In other games, this may have returned no results, meaning the 
pointer may point only to the start of a memory location that stores many values.  If 
this was the case, we would have needed to be less narrow in our ‘Range search’ 
and found the address near 0x02355F64 that the pointer points to and then use an 
‘offset’ to identify the actual address of the timer. 
 

9. Looking at the only result for the search, we can see the pointer for the timer is stored 
at 0x021755FC.  Knowing this location, we can build our Action Replay code using 
the ‘Load offset register’ code-type. 
 
Looking at the back of this manual, we can see the ‘Load offset register’ code type 
uses the format: 
 
BXXXXXXX ???????? 
 
Where XXXXXXX is the address of the pointer and ???????? is the offset from the 



pointer to the value we want (our offset is ‘0’ since the pointer points directly to the 
address storing the timer).  Therefore, we use the code in the following way: 
 
B21755FC 00000000 
 
With the pointer address loaded into the offset register, the value we now write is 
written to the address given by the pointer.  Since we don’t need to give an address, 
we provide the value ‘0’ as follows: 
 
B21755FC 00000000 
00000000 00000000 
 
We now have a code that writes the value ‘0’ to the address indicated by the pointer 
at address 0x21755FC, which is location of the timer for any level. 
 

10. All we need to do now is add a condition to the code to make sure that it doesn’t 
crash the game if the pointer hasn’t been set (like when you first start the game).  We 
do this by adding a ‘32bit If not equal’ code to the start.  We will simply use this code 
to check whether the value of the pointer we identified in the previous section has 
been set to anything (so is not equal to 00000000). 
 
We can find the code-type for a ‘32bit If not equal’ code at the back of the manual: 
 
6XXXXXXX YYYYYYYY 
 
Where ‘x’ is the address and ‘y’ is the value.  This gives us: 
 
621755FC 00000000 
 
Which in English means “If the value at memory location 621755 is NOT equal to 
“00000000” then….” 
 
So now we can add this condition to the start of our code: 
 
621755FC 00000000 
B21755FC 00000000 
00000000 00000000 
 
Finally, we simply need to end the ‘If’ which we do with a D2 code-type, meaning our 
finished code looks like: 
 
621755FC 00000000 
B21755FC 00000000 
00000000 00000000 
d2000000 00000000 
 
We now have a code that freezes the timer on any type of race and that is stable 
because it only becomes active once the pointer it uses has been set. 

 
 

6. Publishing your Action Replay Codes 
 
Once you’ve created your own first killer codes, no doubt you’ll want to share them with the 
rest of the Action Replay community.  There are many ways to do this and no doubt you’ll 
become more sophisticated in how you share you codes as the codes you create grow in 
popularity. 
 
6.a. Are Your Codes Ready To Be Published? 
 



The most important thing to ask yourself before you share your codes with the World is “are 
your codes ready to be published?” 
 
Action Replay gamers around the World are going to search out your codes, spend time 
entering them in or copying them to their Action Replay and then excitedly loading their game 
and expecting your codes to do just what they’re supposed to.  You owe it to them to ensure 
that your codes do what they’re supposed to, that they don’t crash a couple of levels in and 
that they don’t do anything unexpected.  The way you achieve this is by thoroughly testing 
your codes and resolving any issues you encounter. 
 
The very best codes will be easy and fun to use, well tested and totally stable.   
 
Tip: If you’re not sure that a code is 100%, why not upload it to your website or chosen forum 
as ‘BETA’, that way other users can test the code and provide you with feedback without 
expecting the code to be perfect first time. 
 
6.b. Share Codes Through Online Forums or Your Website 
 
One of the easiest ways to share your codes is to simply post them on a discussion forum 
dedicated to new Action Replay DS codes or on your own website. 
 
When you post new codes, be sure to present them clearly, with all the necessary information.  
 
Always include: 
 

• The game’s full name 
• The game’s cartridge ID (see below) 
• The region of the game (is it USA, European or Japanese?) 
• The code’s name (be descriptive) 
• The codes themselves, displayed clearly using a fixed width font (if possible). 

 
If you’re not sure that your code is 100% stable, call it a BETA code. This will warn people 
that the code may crash and encourage them to provide you with feedback. 
 
Game IDs 
 
It is important that you know the cartridge ID of a game in order to publish codes for it.  
Cartridge IDs are codes that are unique to each different version of a game (for example if it 
has been re-released following a change) and help to ensure that a set of codes was created 
for the exact version of a game that a user has. 
 
The cartridge ID of the game you are training is clearly displayed on the trainers home screen 
(on your DS console) when you insert a game cartridge, before you tap to run it. 
 
 
6.c. Create an XML Code Feed for Action Replay Code Manager 
 
The most sophisticated way to share your codes is by creating an XML feed designed for 
Action Replay Code Manager (which is included with Action Replay).  By creating an unofficial 
XML Code Feed users will be able to subscribe to your feed for instant access to your codes 
as soon as you add them to your feed. 
 
In order to provide an XML Code Feed you will need somewhere to host your feed, like your 
own web server or space on a shared server.  Once you have created your feed you upload it 
to your server and provide people with the address of the feed so that they can subscribe. 
 
Users can then add your feed to their subscriptions in Action Replay Code Manager and will 
have instant access to your codes from within the Code Manager. 
 



Who Should Create an XML Code Feed? 
 
XML Code Feeds were designed with prolific hackers, groups of hackers and large games 
websites in mind.  Although the XML Code Feed is easy to understand and put together by 
hand, it is ideally suited to being automatically generated by dynamic pages like PHP or ASP, 
accessing a database of codes. 
 
XML Code Feed Schema 
 
If you would like to build your own XML Code Feed, you should be able to get an 
understanding of the schema by looking at the official Codejunkies.com XML Code Feeds 
pre-configured in Action Replay Code Manager.   
 
You will see that the XML is structured as follows (data is for example only): 
 
<?xml version="1.0" encoding="UTF-8"?> 
<codelist> 
 <name>Codejunkies EU Games</name> 
 <game> 
  <name>Advance Wars Dual Strike</name> 
  <gameid>AWRP 1bd98037</gameid> 
  <date>2006/08/01 15:08</date> 
  <cheat> 
   <name>Infinite Funds In Battle (Press L+R)</name> 
   <codes>94000130 fdff0000 021a7794 05f5e0ff d2000000 
00000000 </codes> 
  </cheat> 
 
 </game> 
</codelist> 

 
General methods for creating XML feeds for your server technology will be well documented 
elsewhere and are beyond the scope of this document. 
 

7. Advanced Techniques 
 
7.a. Using Masks 
 
Masking 16-bit conditional code-types 
 
Masks are traditionally used to 'hide' bits that are not relevant to a condition we’re interested 
in, and can be very useful in a range of circumstances.  An example where a mask is often 
employed is on a memory location that stores which buttons are pressed on your DS at any 
given time. 
 
Let's say you want to activate a code when button ‘Y’ is pressed.  The value at that memory 
location is 0000 when no buttons are pushed, and is set to 0002 when ‘Y’ is pressed.  This 
memory location is set to a different value depending on the button or button combination you 
press: 
 
’UP’+’Y’ is 0012, ‘DOWN’+’Y’ is 0042, etc. so the condition 9XXXXXXX 00000002 will only 
be true when you press button ‘Y’ alone, and stops working if you press ‘DOWN’+’Y’ or ‘A’+’Y’. 
 
You can use a mask with a 16-bit condition code-type to hide non-relevant bits, meaning that 
whatever button is pressed in addition to ‘Y’, the condition is still true and the code is 
activated. 
 
The 16-bit value 0x0002 equals 0000000000000010 in binary. This means when looking for 
the button-press ‘Y’, your condition is only interested in the second of the 16 bits. You can 
create a mask to hide the 15 other bits by setting them up to ‘1’ and leaving the bit you’re 



interested in set on ‘0’. In this case, mask would be 1111111111111101 in binary, which we 
convert to 0xFFFD in Hex. 
 
If you use the condition 9XXXXXXX FFFD0002, it will always activate when the value of the 
second bit is ‘1’ at address XXXXXXXX. 
 
With this mask in place, the following values would have the following effects: 
 

CODE ACTIVE CODE IN-ACTIVE 
Hex Binary Hex Binary 

0x0002 0000000000000010 0xFFF0 1111111111110000 

0x0003 0000000000000011 0x0001 0000000000000001 

0xFFFF 1111111111111111   

0XFFF2 1111111111110010   

 
The values in the left column activate the code because they all have the second bit from the 
right set to ‘1’, regardless of what other bits are set to.  The values in the right column will not 
activate the code because they all have the second bit to the right set to ‘0’, again, regardless 
of what other bits are set to. 
 
 
7.b. Button Press Locations 
 
Sophisticated Action Replay codes often use button presses to activate or deactivate them or 
to control them in some way (like cycling through items using ‘LEFT’ or ‘RIGHT’).  In order to 
use button presses in our codes, we need a way to know their state. 
 
In the previous section, we looked at using a mask on a 16-bit conditional code type and used 
the example of the location that stores the current pressed state of the DS’s buttons.  If you 
have not done so, read Section 6.a. for an understanding of how masks can give you better 
precision when working with button-press states. 
 
To set up a condition on a button press in your own codes, you can find a generic memory 
location in the hardware registers at address 0x4000130. 
 
Use the Hex viewer to jump to that address and enable auto-refresh.  Try pressing each 
button on your DS console and watch the value at that address change. 
 
Button(s) Value Button(s) Value Button(s) Value
A FE A + SELECT FA START + UP B7 

B FD A + UP BE START + DOWN 77 

X n/a A + DOWN 7E START + LEFT D7 

Y n/a A + LEFT DE START + RIGHT E7 

START F7 A + RIGHT EE SELECT + UP BB 

SELECT FB B + START F5 SELECT + DOWN 7B 

UP BF B + SELECT F9 SELECT + LEFT DB 

DOWN 7F B + UP BD SELECT + RIGHT EB 

LEFT DF B + DOWN 7D UP + LEFT 9F 

RIGHT EF B + LEFT DD UP + RIGHT AF 

A + B FC B + RIGHT ED DOWN + LEFT 5F 

A + START F6 START + SELECT F3 DOWN + RIGHT 6F 

 



The above table is by no means an exhaustive list of all button combinations and their values.  
If you need values for any other button combinations, just use the Hex viewer to look at the 
address and note down the value for the button combination you are after. 
 
The hardware register at 0x4000130 actually only maps the original GBA buttons and 
therefore does not include the states for the ‘X’ and ‘Y’ buttons. 
 
7.c. Code-types and Advanced Nesting 
 
With the exception of the ‘memcopy’ function, code-types can be nested indefinitely for extra 
precision and advanced hacking. 
 
Here’s three examples: 
 
 
Example 1 
Pointer Type – Super Mario 64 - Invincibility 
 
Checks that a pointer has been set, if it has loads the value of the pointer into the stored 
register and then writes a value of 0x1C to the stored register location (plus an offset). 
 
Code Explanation 
6209B450 00000000 32bit ‘If not equal’ instruction. Code below will only activate when the 

value at address 0x0209B450 differs from ‘0’ (this is to prevent the 
code from being activated before the pointer has been set up at that 
memory location). 

B209B450 00000000 Load offset register. Loads the offset register with the data at address 
0x0209B450. In this example it will be a pointer which points to 
another memory location. 

200006A0 0000001C 8bit write of 0x1C to the location set by the offset register + 0x06A0. 

D2000000 00000000 End-code instruction. Ends the current repeat block (if any), then 
performs ‘End-if’ on any outstanding conditional statements. Also sets 
‘offset’ and ‘stored’ to zero. 

 
 
Example 2 
Repeat Type - Age of Empires - All Levels Unlocked 
 
Store the value 00030201 at address 0238203C, then at 02382090, and keep repeating for 
another 27 times. 
 
Code Explanation 
D3000000 0238203C Loads the offset register with the value 0238203C 

D5000000 00030201 Sets the Stored register with value 00030201 

C0000000 0000001C Set the repeat to 0x1C (28 in decimal) 

D6000000 00000000 32bit store and increment. Saves all 32 bits of ‘stored’ register to 
address (XXXXXXXX + ‘offset’). Post-increments ‘offset’ by 4. 

DC000000 00000050 adds 0x0050 to offset register 

D2000000 00000000 End all Condition & clear up all registers 
 
 
Example 3 
Advanced Nesting - Resident Evil Deadly Silence - Super Item Modifier Slot 1 
 



On inventory menu window, press ‘SELECT’+’L’ or ‘SELECT’+’R’ to modify the object found 
in the highlighted slot. 
 
Item modifier is at address 0x0213BF2E. Each time you modify the value at this address, it 
turns the item in Slot 1 into another item. 
 
Code Explanation 

Increase at address 0213BF2E when ‘SELECT’+’L’ is pressed… 
9213BDC2 00000000 16bit ‘If equal’ instruction. Used here to make sure that the code 

activates only when you are on the item menu. 

74000100 FF00000C 16bit ‘If less-than’ instruction. At the address 0x04000100 there is a 
generic counter.  This slows down the code's execution so items appear 
one by one instead of scrolling through ten items in less than a second. 

7213BF2E FF00004E 16bit ‘If less-than’ instruction. Makes sure the item count doesn't 
increase above 0x4e, which is the last available item (otherwise the 
game would crash). 

94000130 FDFB0000 16bit ‘If equal’ + mask. This means the code will activate if button-
pressed state equals ‘SELECT’+’L’. 

DA000000 0213BF2E 16bit load from address 0x213BF2E into stored register. 

D4000000 00000001 Add 0x0001 to the value in stored register. 

D7000000 0213BF2E 16bit store to address 0x213BF2E the stored register. 

D2000000 00000000 End all condition & clear up all registers. 

Decrease at address 0213BF2E when ‘SELECT’+’R’ is pressed… 
9213BDC2 00000000  

74000100 FF00000C  

8213BF2E FF000001  

94000130 FEFB0000  

DA000000 0213caee  

D4000000 FFFFFFFF  

D7000000 0213CAEE  

D2000000 00000000  
 
 
7.d. Saving out a Binary File 
 
Another technique used by advanced hackers is dumping out the complete memory as a 
binary file and then analysing the binary in a disassembler such as IDA*.  When 
disassembled, it’s possible to look for ASCII text such as ‘debug menu’ or ASCII names for 
items/costumes/characters within the game. 
 
To save out a binary file using Trainer Toolkit for later disassembly, open the Hex View and 
right click.  Choose ‘Save to file’ from the popup menu.  On the range panel that appears type 
0x02000000 as the ‘From address’ and 0x02400000 as the ‘To address’.  You’re asked to 
choose a destination and name to save the binary file to. 
 
There is also an alternative memory location between 0x037F8000 and 0x03810000 that 
you may wish to consider though, to date, nothing of interest has been found in this memory 
range. 
 
Please note: This is very much an advanced technique; you’re on your own! 
 
*IDA is a commercial disassembler and debugger aimed at professional reverse-engineers. 



 
8. Useful Information 
 
8.a. Decimal to Hexadecimal Conversion Table 
 
Here are the hexadecimal equivalents of some decimal values you might use frequently when 
developing new codes. 
 
Decimal Hex Decimal Hex Decimal Hex 
0 0 15 F 200 C8 

1 1 16 10 300 12C 

2 2 17 11 400 190 

3 3 18 12 500 1F4 

4 4 19 13 600 258 

5 5 20 14 700 2BC 

6 6 30 1E 800 320 

7 7 40 28 900 384 

8 8 50 32 999 3E7 

9 9 60 3C 1,000 3E8 

10 A 70 46 9,999 270F 

11 B 80 50 10,000 2710 

12 C 90 5A 99,999 1869F 

13 D 99 63 100,000 186A0 

14 E 100 64 1,000,000 F4240 

 
Tip: Use Windows’ built-in calculator (in Scientific Mode) to quickly convert any decimal value 
you may need into hexadecimal if the number you need isn’t in the table above. 
 
 
8.b. Complete List of Action Replay Engine Code-types 
 
For explanation of symbols used in the code-type table, see key below table. 
 
 
Code Function 

0XXXXXXX YYYYYYYY 32bit write of YYYYYYYY to location: 
(xxxxxxx + ‘offset’) 

1XXXXXXX ????YYYY 16bit write of YYYY to location: 
(XXXXXX + ‘offset’)   

2XXXXXXX ??????YY 8bit write of YY to location: 
(XXXXXXX + ‘offset’) 

3XXXXXXX YYYYYYYY 32bit ‘If less-than’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) < YYYYYYYY then 
execute the following block of instructions. 

Conditional instructions can be nested. 

4XXXXXXX YYYYYYYY 32bit ‘If greater-than’ instruction. 



If the value at (XXXXXXX or ‘offset’ when address is 0) > YYYYYYYY then 
execute the following block of instructions. 

Conditional instructions can be nested. 

5XXXXXXX YYYYYYYY 32bit ‘If equal’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) == YYYYYYYY then 
execute the following block of instructions. 

Conditional instructions can be nested. 

6XXXXXXX YYYYYYYY 32bit ‘If not equal’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) != YYYYYYYY then 
execute the following block of instructions. 

Conditional instructions can be nested. 

7XXXXXXX ZZZZYYYY 16bit ‘If less-than’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) masked by ZZZZ < 
YYYY then execute the following block of instructions. 

Conditional instructions can be nested. 

8XXXXXXX ZZZZYYYY 16bit ‘If greater-than’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) masked by ZZZZ > 
YYYY then execute the following block of instructions. 

Conditional instructions can be nested. 

9XXXXXXX ZZZZYYYY 16bit ‘If equal’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) masked by ZZZZ == 
YYYY then execute the following block of instructions. 

Conditional instructions can be nested. 

AXXXXXXX ZZZZYYYY 16bit ‘If not equal’ instruction. 

If the value at (XXXXXXX or ‘offset’ when address is 0) masked by ZZZZ != 
YYYY then execute the following block of instructions. 

Conditional instructions can be nested. 

BXXXXXXX ???????? Load offset register. 

Loads the offset register with the data at address (XXXXXXX + ‘offset’) 

Used to perform pointer relative operations. 

C??????? NNNNNNNN Repeat operation. 

Repeats a block of codes for NNNNNNNN times. The block can include 
conditional instructions. 

Repeats blocks cannot contain further repeats. 

D0?????? ???????? End-if instruction. 

Ends the most recent conditional block. 

D1?????? ???????? End-repeat instruction. 

Ends the current repeat block. Also implicitly ends any conditional 
instructions inside the repeat block. 

D2?????? ???????? End-code instruction. 

Ends the current repeat block (if any), then End-if's any further outstanding 



conditional statements. 

Also sets ‘offset’ and ‘stored’ to zero. 

D3?????? YYYYYYYY Set offset register. 

Loads the offset register with the value YYYYYYYY. 

D4?????? YYYYYYYY Add to ‘stored’. 

Adds YYYYYYYY to the ‘stored’ register. 

d5?????? YYYYYYYY Set ‘stored’. 

Loads the value YYYYYYYY into the ‘stored’ register. 

D6?????? XXXXXXXX 32bit store and increment. 

Saves all 32 bits of ‘stored’ register to address (XXXXXXXX + ‘offset’). Post-
increments ‘offset’ by 4. 

D7?????? XXXXXXXX 16bit store and increment. 

Saves bottom 16 bits of ‘stored’ register to address (XXXXXXXX + ‘offset’). 
Post-increments ‘offset’ by 2. 

D8?????? XXXXXXXX 32bit store and increment. 

Saves bottom 8 bits of ‘stored’ register to address (XXXXXXXX + ‘offset’). 
Post-increments ‘offset’ by 1. 

D9?????? XXXXXXXX 32bit load "stored" from address. 

Loads ‘stored’ with the 32bit value at address (XXXXXXXX + ‘offset’) 

DA?????? XXXXXXXX 16bit load ‘stored’ from address. 

Loads ‘stored’ with the 16bit value at address (XXXXXXXX + ‘offset’) 

DB?????? XXXXXXXX 8bit load "stored" from address. 

Loads ‘stored’ with the 8bit value at address (XXXXXXXX + ‘offset’) 

EXXXXXXX NNNNNNNN 
VVVVVVVV VVVVVVVV * 
((NNNNNNNN+7)/8) 

Direct memory write. 

Writes NNNNNNNN bytes from the list of values VVVVVVVV to the addresses 
starting at (XXXXXXX + ‘offset’) 

FXXXXXXX NNNNNNNN Memory copy. 

Copies NNNNNNNN bytes from addresses starting at the ‘offset’ register to 
addresses starting at XXXXXXXX. 

 
Key to symbols used in the code-type table 
 
Symbol Meaning 

???? Values here don’t matter 

xxxx Address 

yyyy Data 

zzzz Mask 

nnnn Count 

vvvv Direct values 

“Offset” A code-engine register used to hold an address offset 



“Stored” A code engine register used to store data 
 
 

9. Technical Support & Customer Services 
 
Trainer Toolkit is a technical product and is, by its nature, aimed at technically minded individuals with a 
working knowledge or interest in computers, programming, games and the Internet. 
 
All available information relating to starting out in game hacking has been compiled to produce this 
manual.  Datel are unable to provide technical support on specific hacking problems or general hacking 
techniques. 
 
Of course, if you’re experiencing problems with your Trainer Toolkit hardware itself; we’re here to help.  
Before contact Datel’s technical support or Customer Services staff though, please ensure you have 
read and understood the content’s of this User Manual. 
 
Contacting Us 
 
When you contact Datel customer services or technical support department, please have 
ready the version number of the software you are using (normally found on the inner ring on 
the underside of the software disc) along with when and where you purchased the product.  
 

DATEL CUSTOMER SERVICES EUROPE: 
 
Customers Services, 
Datel Ltd, 
Stafford Road, 
Stone, 
STAFFS 
ST15 0DG 
UNITED KINGDOM 
 
Email: support@datel.co.uk 
Web: www.codejunkies.com 
 
UK Technical Support Hotline: 
 
0906 550 1236* 
 
*Calls cost £1 per minute.  Lines open Monday-Friday 9am-5pm and 9am-3pm Saturday, 
excluding Bank Holidays and other National holidays. You will be asked to confirm that you 
are aged 18 or over and have the permission of the bill payer.  UK residents only. 
 

DATEL CUSTOMER SERVICES USA: 
 
ATTN: Customer Services, 
Datel Design & Development 
15500 Lightwave Drive, Suite 101, 
ClearwaterFL 33760 
 
Email: support@dateldesign.com 
Web: www.codejunkies.com 
 
 
 

http://www.codejunkies.com/
http://www.codejunkies.com/


© 2007 Datel Design & Development Ltd.  Trainer Toolkit is a trademark of Datel Design & 
Development Ltd.  Action Replay Codes ©1996-2007 Datel Design & Development Ltd and/or 
its suppliers. 
 
Trainer Toolkit for Nintendo® DS™ and DS Lite™ is a 100% unofficial product and is NOT 
sponsored, endorsed or approved by Nintendo®, nor any games developer or publisher.  
DS™ and DS Lite™ are registered trademarks of Nintendo®. 


	1. Introduction
	2. Getting Started
	2.a. Pack Contents
	2.b. System Requirements
	2.c. Installing the Trainer Software
	2.d. Connecting to the Trainer Board
	2.e. The Action Replay Trainer Cartridge

	3. Introduction to Game Training (Hacking)
	3.a. How Action Replay Codes Work
	3.b. Anatomy of an Action Replay Code
	3.c. How Games are Trained
	3.d. Finding the Right Address

	4. Overview of the Trainer Toolkit Software
	4.a. Search
	4.b. Search Results
	4.c. Hex View
	4.d. Run-list
	4.e. Watched Locations
	4.f. Disassembly View
	4.g. Updating your Trainer Board Firmware

	5. Finding Your Own Cheat Codes
	5.a. Set-up Checklist
	5.b. Hacking Examples – Step-by-Step
	5.b.i. Castlevania: Dawn of Sorrow
	5.b.ii. New Super Mario Bros
	5.b.iii. Super Mario Kart DS


	6. Publishing your Action Replay Codes
	6.a. Are Your Codes Ready To Be Published?
	6.b. Share Codes Through Online Forums or Your Website
	6.c. Create an XML Code Feed for Action Replay Code Manager

	7. Advanced Techniques
	7.a. Using Masks
	7.b. Button Press Locations
	7.c. Code-types and Advanced Nesting
	7.d. Saving out a Binary File

	8. Useful Information
	8.a. Decimal to Hexadecimal Conversion Table
	8.b. Complete List of Action Replay Engine Code-types

	9. Technical Support & Customer Services
	DATEL CUSTOMER SERVICES EUROPE: 
	DATEL CUSTOMER SERVICES USA: 


